Weighted fractional and Hardy type operators in Orlicz–Morrey spaces
نویسندگان
چکیده
We prove boundedness of the Riesz fractional integral operator between distinct Orlicz–Morrey spaces, which is a generalization Adams type result. Moreover, we investigate some weighted Hardy operators and fractio
منابع مشابه
Weighted Composition Operators from Weighted Hardy Spaces to Weighted-type Spaces
The boundedness and compactness of the weighted composition operator from weighted Hardy spaces to weighted-type spaces are studied in this paper.
متن کاملWeighted Multilinear Hardy Operators on Herz Type Spaces
This paper focuses on the bounds of weighted multilinear Hardy operators on the product Herz spaces and the product Morrey-Herz spaces, respectively. We present a sufficient condition on the weight function that guarantees weighted multilinear Hardy operators to be bounded on the product Herz spaces. And the condition is necessary under certain assumptions. Finally, we extend the obtained resul...
متن کاملWeighted Composition Operators and Integral-Type Operators between Weighted Hardy Spaces on the Unit Ball
متن کامل
Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2021
ISSN: ['0010-1354', '1730-6302']
DOI: https://doi.org/10.4064/cm8129-6-2020